Generating and designing DNA with deep generative models
نویسندگان
چکیده
We propose generative neural network methods to generate DNA sequences and tune them to have desired properties. We present three approaches: creating synthetic DNA sequences using a generative adversarial network (GAN); a DNAbased variant of the activation maximization (“deep dream”) design method; and a joint procedure which combines these two approaches together. We show that these tools capture important structures of the data and, when applied to designing probes for protein binding microarrays (PBMs), allow us to generate new sequences whose properties are estimated to be superior to those found in the training data. We believe that these results open the door for applying deep generative models to advance genomics research.
منابع مشابه
One-Shot Generalization in Deep Generative Models
Humans have an impressive ability to reason about new concepts and experiences from just a single example. In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept. We develop machine learning systems with this important capacity by developing ...
متن کاملMulti-channel Sequential Structure
We argue for the benefit of designing deep generative models through a mixedinitiative, co-creative combination of deep learning algorithms and human specifications, focusing on multi-channel music composition. Sequence models have shown convincing results in domains such as summarization and translation; however, longer-term structure remains a major challenge. Given lengthy inputs and outputs...
متن کاملLearning Deep Generative Models with Discrete Latent Variables
There have been numerous recent advancements on learning deep generative models with latent variables thanks to the reparameterization trick that allows to train deep directed models effectively. However, since reparameterization trick only works on continuous variables, deep generative models with discrete latent variables still remain hard to train and perform considerably worse than their co...
متن کاملLearning Deep Generative Models With Discrete Latent Variables
There have been numerous recent advancements on learning deep generative models with latent variables thanks to the reparameterization trick that allows to train deep directed models effectively. However, since reparameterization trick only works on continuous variables, deep generative models with discrete latent variables still remain hard to train and perform considerably worse than their co...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.06148 شماره
صفحات -
تاریخ انتشار 2017